

European Freight DAC Delivery Programme

enabled by Shift2Rail

Moving European Rail Freight Forward

Meeting, place, xx month 2021

EDDP introduction **EDDP** structure

Shift2Rail's Freight Programme

- Projects under Shift2Rail's Innovation Programme 5 on technologies for sustainable and attractive European Railway Freight have inspired this programme
- Shift2Rail, a public-private partnership funded under the European Union's Horizon 2020 programme, contributes to smart and sustainable growth by developing cuttingedge innovative solutions to create railway systems of the future for passengers and freight

28 MEMBERS

493 PARTICIPANTS

29 COUNTRIES

127 SMEs

128
RESEARCH CENTRES
AND UNIVERSITIES

European DAC Delivery Programme enabled by Shift2Rail

Key Benefits

- Increasing infrastructure capacity
- Increasing rail freight efficiency
- Make modal shift possible:+50% by 2030, +100% by 2050
- > Delivering the European Green Deal

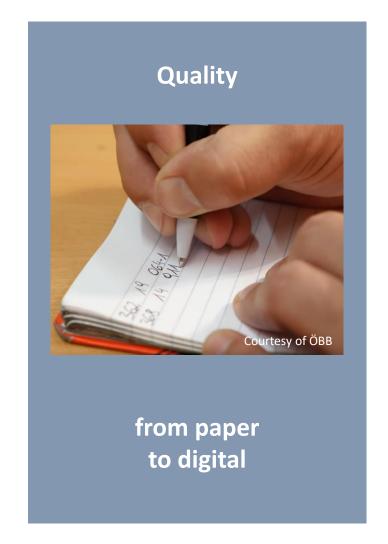
Aim

- Selection of an open, fully functional, operationally tested, safe, sustainable European DAC open model ready for industrialization and deployment (assessments of available solutions, testing and demos)
- Deliver final open design of the selected model by the end of 2021 of which interoperability and safety requirements to be incorporated to TSI, Green Deal & Digitalization Package 2022
- > Identify necessary add-on automation components and integrate them
- Identify migration and business plans compatible across Europe as well as the necessary resources to match them
- communication and dissemination to facilitate DAC deployment in Europe

Enabler

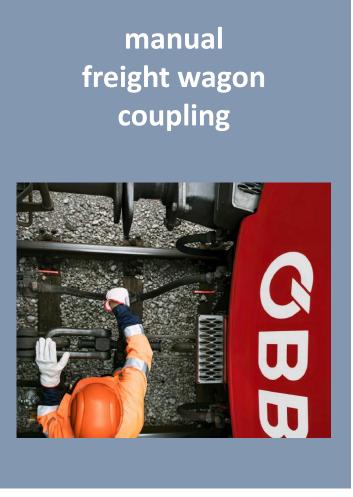
This work is enabled by **Shift2Rail** to ensure technology and oversight independence, with a major role for the railway operating community as major future customer of the operational changes introduced, **to meet final logistic customer expectations**.

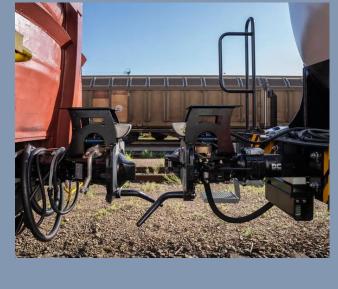
The challenges for EU rail freight



Capacity

- + 50% rail freight
- 55% GHG emissions by 2030


from bottleneck to green backbone


Processes today – and tomorrow

automatic freight wagon coupling

Courtesy of ÖBB

Courtesy of DAC4EU consortium

The DAC and automation benefits for EU

rail freight sectoral

society & environment

Capacity

Smart capacity, more efficient than conventional extension & much faster

Productivity

Reduction of time/efforts (€), increase of system speed and asset efficiency

Competitiveness

new markets and growth

Quality

Increased flexibility and reliability, innovative customer services and information

worker's & rail safety

Automation of manual processes, invest in human capital

Economics & employment

10+ bn EUR value creation in Europe

> better workplaces in rail

Green Deal

- 10 to -20 mn tons CO_{2 equiv.} p. a.

DAC = Digital + Automation + Coupling

this is a major transformation project

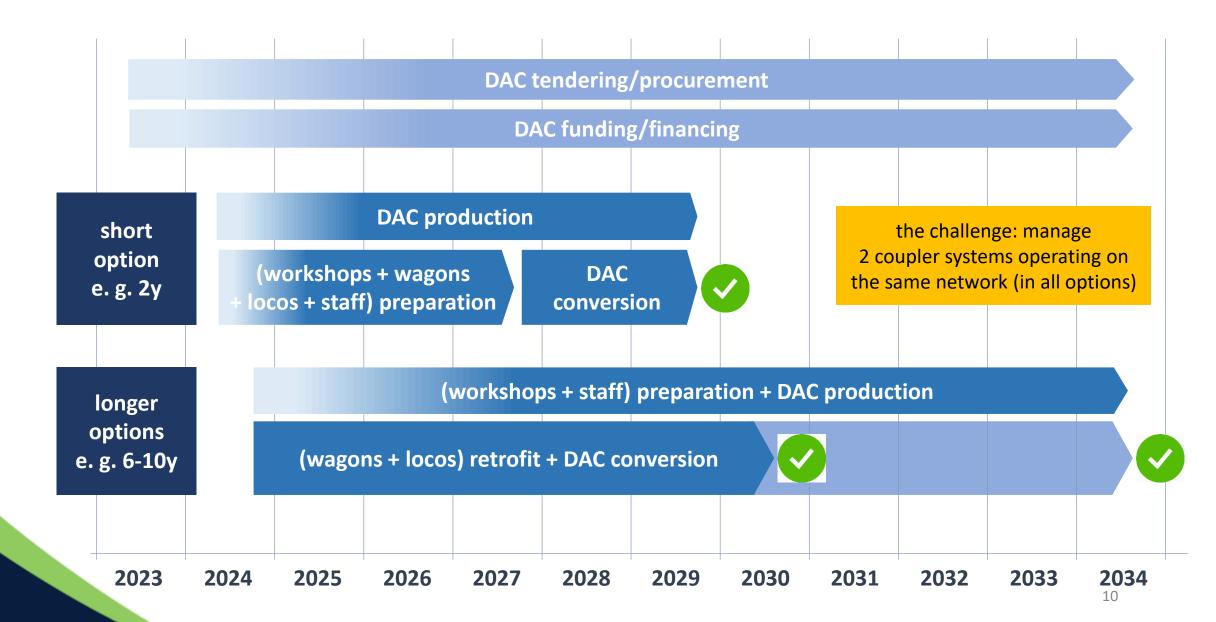
- push EU rail freight operations in 1435 network from heavily relying on human factor to 21st century world benchmark
- > rail freight automation with DAC is *the* chance for Europe and *the* offer to European policy makers

Implementation: DAC and automation use cases

Benefit allocation to process steps

	Functionality (DAC/automation use case)	Basis	additional automation component	Shun- ting	Train prep	Train run	Mainte- nance
1	Automated coupling + manual uncoupling	DAC*	-	X			
2	Automatic brake test & calculation of braking capacity	DAC*	automatic braking test device		Х		
3	Recording of train composition	DAC*	-		Х		
4	Heavier trains & longer trains (within existing infra limitations)	DAC*	-			Х	
5	Increased payload	DAC*	(elimination of buffers, modified new vehicle design)			X	X
6	Train integrity (for movi. block ops.) + abandon of rear signal	DAC*	train integrity system (+ ETCS level 3)			Х	
7	Increased speed via improved longitudinal forces	DAC*	Benefits ass for different			X	
8	Increased speed via better braking performance	DAC*	electro-pneumatic brake	groups	Х	X	
9	Wagon condition/performance info (incl. derailment detection)	DAC*	wagon telematics • RUs • WKs			X	X
10	Telematics for customers	DAC*	wagon telematics			Х	
11	Automated parking brake	DAC*	automated parking brake system	X	X		
12	Automatic uncoupling (remote)	DAC*	actuator + automated parking brake system	X	Х		
13	Automated technical wagon inspection	DAC*	wagon telematics + video gate + infra check points		X		
14	Longer trains up to 1500m	DAC*	(infrastructural adaptations +) ep-brake/distributed power			Х	
	Future automation use cases						
15	Dynamic coupling and uncoupling	DAC*	actuator + dynamic coupling system			X	

* incl. infrastructural adaptions for safe DAC operation (e.g. buffer stops, ..)


1. Cost-benefit assessment for all use cases

2. Selection of use cases and linked technology packaging for roll-out to be defined based on CBA results

benefits = gains in process
(time, system time, cost savings, capacity,
reliability, quality, safety
+ induced modal shift)

DELIVERY PROGRAMME Enabled by Shift2Rail

Implementation: DAC migration scenarios under assessment

Implementation: DAC as employment booster

900k – 1 mn DAC (wagons)

450k – 500k automation components (wagons)

34k - 40k hybrid couplers (locos)

buffer stops, ... XX

€ 5-6 bn € 2,2 - 2,5 bn € 0,4 bn tbd

€ 7,6 – 8,9 bn + tbd

all numbers indicative and under assessment

€ 1,4 - 1,5 bn € 0,1 bn tbd

€ 1,5 – 1,6 bn + tbd

to be retrofitted:

labour

> 450k - 500k freight wagons

17k - 20k locos

XX

buffer stops, ...

produced in EU retrofitted in EU countries € 9,1 – 10,5 bn + tbd

Implementation: DAC funding/financing to ensure business case

costs

dimensions:

CAPEX

OPEX

benefits

capacity productivity quality

beneficiaries: RUs, IMs, WKs, socio-economic business case

huge benefits but small margin business

benefits do not yet lead to business case by itself

safeguarding a good balance between funding/financing

propositions

- > Observation time for return on cost <10 years</p>
- > CAPEX funding
- > Additional OPEX funding

> distribution of costs/benefits between actors

DAC short term calendar & process

Mid-End July 2020 Invitation for the Supervisory Board

Invitation for the European DAC Programme Board to freight operators, Infra Managers,

Wagon Keepers, DAC manufacturers, etc.

Presentation of the DAC delivery plan to the ERA TWG Freight (29/06/2020)

Sept 2020 First meeting of the Supervisory Board & Programme Board

Kick-off of the activities

Oct 2020 Start of the different WPs, definition of the activities WBS, target delivery dates, etc.

Nov 2020 Selection of the DAC Programme Manager

During 2021 Regular meetings of the Programme Board (progress monitoring)

2^{nd/}3rd Quarter 2021 Assessment process of the European DAC test activities during 2021

end of 2021 Delivery of the DAC open model specifications for the TSI Digital Package

EDDP introduction EDDP structure

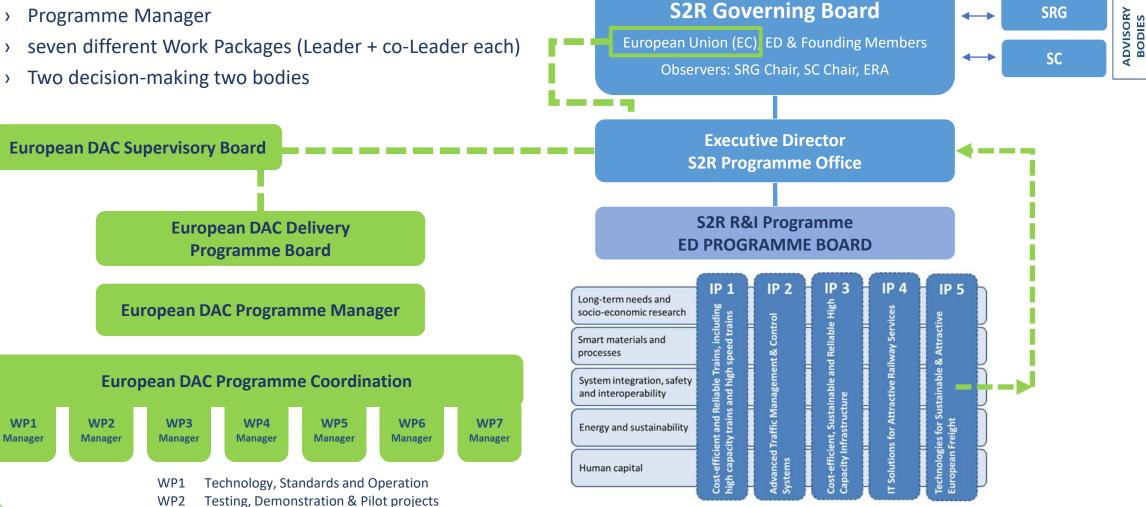
The EDDP structure

LUROPEAN DAC **DELIVERY PROGRAMME** Enabled by Shift2Rail

- Programme Manager

Migration Plan

Infrastructure, Rail System Capacity and Green Deal


Intelligent Rail Freight (future additional automation)

Costs, Business Case and Financing Communication and Dissemination

WP3

WP5

WP6

On-going connected activities

DAC4EU BMVI Project officially started after receiving € 13mn from German Government in June 2020 [DB / DB Cargo, SBB Cargo, Rail

Cargo Group, Ermewa, GATX Rail Europe, VTG]. Couplers from four different manufacturers under DAC mechanical, pneumatic, electrical and communication tests, implying a freight train formation of 12 wagons coupled with DACs. Dynamic testing until July 2021. Demonstrator train in Europe (24 wagons) with selected DAC type in phase 2.

Certified DAC as output until Dec. 2022.

DAC Winter TestsAll DACs are tested under winter conditions, including telematics in winter 2020/21, organized by Trafikverket with the

aid of Green Cargo. A train formation will be tested in marshalling yards and in circulation through different places in

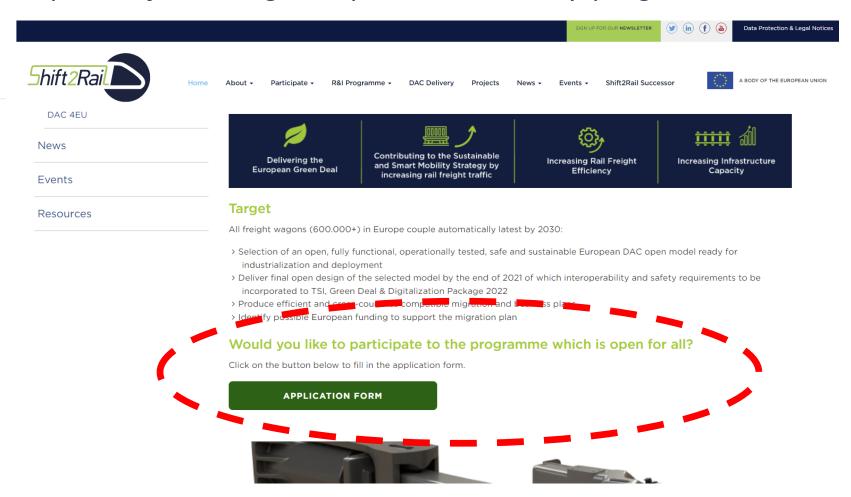
Sweden. Possible phase 2 is industrial business case in a real environment.

IP5 Shift2Rail FR8RAIL II DAC Type 4 Prototype final Test Bench Tests completed.

FR8RAIL IV under study and pre-approved, will support DAC Trafikverket tests.

ERAHas started the TWG – Freight for the TSI Revision 2022. Sector is expected to deliver the necessary input to ERA for the

adoption of the DAC in the necessary TSIs that regulate interoperability and railway approvals / authorizations in EU.


CEN WG for developing a new standard for "Automatic Coupler for Freight"

Political supports: Berlin declaration ministries of transport, MoU of major Freight operators & keepers

https://shift2rail.org/european-dac-delivery-programme/

Any questions?

Shift2Rail EDDP Programme Management

Trial R Topal Gorcell Goessiat	•	Mark Topal-Gökceli	ÖBB	mark.topal-goekceli@oebb.at
--------------------------------	---	--------------------	-----	-----------------------------

Jens Engelmann
 railiable
 jens.engelmann@railiable.com

Giorgio Travaini
 Shift2Rail
 giorgio.travaini@s2r.europa.eu

Manuel Alarcon Espinosa
 Shift2Rail
 manuel.alarcon-espinosa@s2r.europa.eu

More information: https://shift2rail.org/european-dac-delivery-programme/